Evolutionary cepstral coefficients
نویسندگان
چکیده
Evolutionary algorithms provide flexibility and robustness required to find satisfactory solutions in complex search spaces. This is why they are successfully applied for solving real engineering problems. In this work we propose an algorithm to evolve a robust speech representation, using a dynamic data selection method for reducing the computational cost of the fitness computation while improving the generalisation capabilities. The most commonly used speech representation are the mel-frequency cepstral coefficients, which incorporate biologically inspired characteristics into artificial recognizers. Recent advances have been made with the introduction of alternatives to the classic mel scaled filterbank, improving the phoneme recognition performance in adverse conditions. In order to find an optimal filterbank, filter parameters such as the central and side frequencies are optimised. A hidden Markov model is used as the classifier for the evaluation of the fitness for each individual. Experiments were conducted using real and synthetic phoneme databases, considering ∗Corresponding author. Centro de Investigación y Desarrollo en Señales, Sistemas e Inteligencia Computacional, Departamento de Informática, Facultad de Ingenieŕıa y Ciencias Hı́dricas, Universidad Nacional del Litoral, Ciudad Universitaria CC 217, Ruta Nacional No 168 Km 472.4, TE: +54(342)4575233 ext 125, FAX: +54(342)4575224, Santa Fe (3000), Argentina. Email address: [email protected] (Leandro D. Vignolo) URL: http://fich.unl.edu.ar/sinc (Leandro D. Vignolo) Preprint submitted to Applied Soft Computing August 3, 2010 *Manuscript Click here to view linked References
منابع مشابه
Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملFuzzy decision fusion of complementary experts based on evolutionary cepstral coefficients for phoneme recognition
متن کامل
Acoustic Emotion Recognition Using Linear and Nonlinear Cepstral Coefficients
Recognizing human emotions through vocal channel has gained increased attention recently. In this paper, we study how used features, and classifiers impact recognition accuracy of emotions present in speech. Four emotional states are considered for classification of emotions from speech in this work. For this aim, features are extracted from audio characteristics of emotional speech using Linea...
متن کاملAge and gender classification using modulation cepstrum
This paper proposes using modulation cepstrum coefficients instead of cepstral coefficients for extracting metadata information such as age and gender. These coefficients are extracted by applying discrete cosine transform to a time-sequence of cepstral coefficients. Lower order coefficients of this transformation represent smooth cepstral trajectories over time. Results presented in this paper...
متن کاملNoise-Robust Speech Features Based on Cepstral Time Coefficients
In this paper, we investigate the noise-robustness of features based on the cepstral time coefficients (CTC). By cepstral time coefficients, we mean the coefficients obtained from applying the discrete cosine transform to the commonly used mel-frequency cepstral coefficients (MFCC). Furthermore, we apply temporal filters used for computing delta and acceleration dynamic features to the CTC, res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 11 شماره
صفحات -
تاریخ انتشار 2011